\(\int \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx\) [509]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 36, antiderivative size = 103 \[ \int \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=-\frac {4 \sqrt [4]{-1} a^2 (i A+B) \text {arctanh}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a^2 (5 i A+3 B) \sqrt {\cot (c+d x)}}{3 d}-\frac {2 A \sqrt {\cot (c+d x)} \left (i a^2+a^2 \cot (c+d x)\right )}{3 d} \]

[Out]

-4*(-1)^(1/4)*a^2*(I*A+B)*arctanh((-1)^(3/4)*cot(d*x+c)^(1/2))/d-2/3*a^2*(5*I*A+3*B)*cot(d*x+c)^(1/2)/d-2/3*A*
(I*a^2+a^2*cot(d*x+c))*cot(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.139, Rules used = {3662, 3675, 3673, 3614, 214} \[ \int \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=-\frac {4 \sqrt [4]{-1} a^2 (B+i A) \text {arctanh}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a^2 (3 B+5 i A) \sqrt {\cot (c+d x)}}{3 d}-\frac {2 A \sqrt {\cot (c+d x)} \left (a^2 \cot (c+d x)+i a^2\right )}{3 d} \]

[In]

Int[Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^2*(A + B*Tan[c + d*x]),x]

[Out]

(-4*(-1)^(1/4)*a^2*(I*A + B)*ArcTanh[(-1)^(3/4)*Sqrt[Cot[c + d*x]]])/d - (2*a^2*((5*I)*A + 3*B)*Sqrt[Cot[c + d
*x]])/(3*d) - (2*A*Sqrt[Cot[c + d*x]]*(I*a^2 + a^2*Cot[c + d*x]))/(3*d)

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3614

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2*(c^2/f), S
ubst[Int[1/(b*c - d*x^2), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]

Rule 3662

Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.)
 + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d
 + c*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ
[n]

Rule 3673

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[B*d*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e
 + f*x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b
*c - a*d, 0] &&  !LeQ[m, -1]

Rule 3675

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*B*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*
(m + n))), x] + Dist[1/(d*(m + n)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^n*Simp[a*A*d*(m + n)
 + B*(a*c*(m - 1) - b*d*(n + 1)) - (B*(b*c - a*d)*(m - 1) - d*(A*b + a*B)*(m + n))*Tan[e + f*x], x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \int \frac {(i a+a \cot (c+d x))^2 (B+A \cot (c+d x))}{\sqrt {\cot (c+d x)}} \, dx \\ & = -\frac {2 A \sqrt {\cot (c+d x)} \left (i a^2+a^2 \cot (c+d x)\right )}{3 d}-\frac {2}{3} \int \frac {(i a+a \cot (c+d x)) \left (\frac {1}{2} a (A-3 i B)-\frac {1}{2} a (5 i A+3 B) \cot (c+d x)\right )}{\sqrt {\cot (c+d x)}} \, dx \\ & = -\frac {2 a^2 (5 i A+3 B) \sqrt {\cot (c+d x)}}{3 d}-\frac {2 A \sqrt {\cot (c+d x)} \left (i a^2+a^2 \cot (c+d x)\right )}{3 d}-\frac {2}{3} \int \frac {3 a^2 (i A+B)+3 a^2 (A-i B) \cot (c+d x)}{\sqrt {\cot (c+d x)}} \, dx \\ & = -\frac {2 a^2 (5 i A+3 B) \sqrt {\cot (c+d x)}}{3 d}-\frac {2 A \sqrt {\cot (c+d x)} \left (i a^2+a^2 \cot (c+d x)\right )}{3 d}-\frac {\left (12 a^4 (i A+B)^2\right ) \text {Subst}\left (\int \frac {1}{-3 a^2 (i A+B)+3 a^2 (A-i B) x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{d} \\ & = -\frac {4 \sqrt [4]{-1} a^2 (i A+B) \text {arctanh}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a^2 (5 i A+3 B) \sqrt {\cot (c+d x)}}{3 d}-\frac {2 A \sqrt {\cot (c+d x)} \left (i a^2+a^2 \cot (c+d x)\right )}{3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 3.07 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.76 \[ \int \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=-\frac {2 a^2 \cot ^{\frac {3}{2}}(c+d x) \left (A+3 (2 i A+B) \tan (c+d x)-6 \sqrt [4]{-1} (A-i B) \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right ) \tan ^{\frac {3}{2}}(c+d x)\right )}{3 d} \]

[In]

Integrate[Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^2*(A + B*Tan[c + d*x]),x]

[Out]

(-2*a^2*Cot[c + d*x]^(3/2)*(A + 3*((2*I)*A + B)*Tan[c + d*x] - 6*(-1)^(1/4)*(A - I*B)*ArcTan[(-1)^(3/4)*Sqrt[T
an[c + d*x]]]*Tan[c + d*x]^(3/2)))/(3*d)

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 229 vs. \(2 (86 ) = 172\).

Time = 0.70 (sec) , antiderivative size = 230, normalized size of antiderivative = 2.23

method result size
derivativedivides \(-\frac {a^{2} \left (\frac {2 A \cot \left (d x +c \right )^{\frac {3}{2}}}{3}+4 i A \sqrt {\cot \left (d x +c \right )}+2 B \sqrt {\cot \left (d x +c \right )}+\frac {\left (-2 i A -2 B \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}+\frac {\left (2 i B -2 A \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}\right )}{d}\) \(230\)
default \(-\frac {a^{2} \left (\frac {2 A \cot \left (d x +c \right )^{\frac {3}{2}}}{3}+4 i A \sqrt {\cot \left (d x +c \right )}+2 B \sqrt {\cot \left (d x +c \right )}+\frac {\left (-2 i A -2 B \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}+\frac {\left (2 i B -2 A \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}\right )}{d}\) \(230\)

[In]

int(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-a^2/d*(2/3*A*cot(d*x+c)^(3/2)+4*I*A*cot(d*x+c)^(1/2)+2*B*cot(d*x+c)^(1/2)+1/4*(-2*I*A-2*B)*2^(1/2)*(ln((1+cot
(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2))/(1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2)))+2*arctan(1+2^(1/2)*cot(d*x+c)^(1/2)
)+2*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2)))+1/4*(-2*A+2*I*B)*2^(1/2)*(ln((1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2))/
(1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2)))+2*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*cot(d*x+c)^(
1/2))))

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 394 vs. \(2 (83) = 166\).

Time = 0.25 (sec) , antiderivative size = 394, normalized size of antiderivative = 3.83 \[ \int \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=-\frac {3 \, \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a^{4}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \log \left (\frac {2 \, {\left ({\left (A - i \, B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a^{4}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (-i \, A - B\right )} a^{2}}\right ) - 3 \, \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a^{4}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \log \left (\frac {2 \, {\left ({\left (A - i \, B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} - \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a^{4}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (-i \, A - B\right )} a^{2}}\right ) + 2 \, {\left ({\left (7 i \, A + 3 \, B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (-5 i \, A - 3 \, B\right )} a^{2}\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}}{3 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )}} \]

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

-1/3*(3*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a^4/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log(2*((A - I*B)*a^2*e^(2*I*d*x + 2
*I*c) + sqrt(-(I*A^2 + 2*A*B - I*B^2)*a^4/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e
^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/((-I*A - B)*a^2)) - 3*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a^4/d^2)*(d
*e^(2*I*d*x + 2*I*c) - d)*log(2*((A - I*B)*a^2*e^(2*I*d*x + 2*I*c) - sqrt(-(I*A^2 + 2*A*B - I*B^2)*a^4/d^2)*(d
*e^(2*I*d*x + 2*I*c) - d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/((
-I*A - B)*a^2)) + 2*((7*I*A + 3*B)*a^2*e^(2*I*d*x + 2*I*c) + (-5*I*A - 3*B)*a^2)*sqrt((I*e^(2*I*d*x + 2*I*c) +
 I)/(e^(2*I*d*x + 2*I*c) - 1)))/(d*e^(2*I*d*x + 2*I*c) - d)

Sympy [F(-1)]

Timed out. \[ \int \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate(cot(d*x+c)**(5/2)*(a+I*a*tan(d*x+c))**2*(A+B*tan(d*x+c)),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 180 vs. \(2 (83) = 166\).

Time = 0.30 (sec) , antiderivative size = 180, normalized size of antiderivative = 1.75 \[ \int \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=-\frac {3 \, {\left (2 \, \sqrt {2} {\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) - \sqrt {2} {\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) + \sqrt {2} {\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )\right )} a^{2} - \frac {12 \, {\left (-2 i \, A - B\right )} a^{2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {4 \, A a^{2}}{\tan \left (d x + c\right )^{\frac {3}{2}}}}{6 \, d} \]

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/6*(3*(2*sqrt(2)*(-(I + 1)*A + (I - 1)*B)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 2*sqrt(2)*(
-(I + 1)*A + (I - 1)*B)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) - sqrt(2)*((I - 1)*A + (I + 1)*B
)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) + sqrt(2)*((I - 1)*A + (I + 1)*B)*log(-sqrt(2)/sqrt(tan
(d*x + c)) + 1/tan(d*x + c) + 1))*a^2 - 12*(-2*I*A - B)*a^2/sqrt(tan(d*x + c)) + 4*A*a^2/tan(d*x + c)^(3/2))/d

Giac [F]

\[ \int \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} \cot \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*(I*a*tan(d*x + c) + a)^2*cot(d*x + c)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\int {\mathrm {cot}\left (c+d\,x\right )}^{5/2}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^2 \,d x \]

[In]

int(cot(c + d*x)^(5/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^2,x)

[Out]

int(cot(c + d*x)^(5/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^2, x)